Unique Path

leetcode unique path

Unique Path

link
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?

iamge
Above is a 3 x 7 grid. How many possible unique paths are there?

思路:这是一道明显的DP题,对于任意个点,它一定是又他的正上方的点或者左方的点移动过来的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
int uniquePaths(int m, int n) {
int dp[m][n] = {0};

//初始条件
for(int i = 0; i < n; i++)
dp[0][i] = 1;
for(int j = 0; j < m; j++)
dp[j][0] = 1;

for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}

return dp[m - 1][n -1];
}
};

Unique Path ii

link
Follow up for “Unique Paths”:

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
与上面的题的唯一的区别是此时会有障碍物在移动的过程中

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
int dp[m][n];

for(int i = 0; i < n; i++){
if(obstacleGrid[0][i] == 0)
dp[0][i] = 1;
else{
dp[0][i] = 0;
}
}

for(int j = 0; j < m; j++){
if(obstacleGrid[j][0] == 0)
dp[j][0] = 1;
else
dp[j][0] = 0;
}

for(int i = 1; i < m; i++)
for(int j = 1; j < n; j++){
if(obstacleGrid[i][j] == 0)
dp[i][j] = dp[i-1][j] + dp[i][j-1];
else
dp[i][j] = 0;
}

return dp[m - 1][n -1];
}
};